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Abstract

Angular parts of certain solvable models are studied. We find that an extension of this class may be based on suitab
metric identities. The new exactly solvable Hamiltonians are shown to describe interesting two- and three-particle sy
the generalized Calogero, Wolfes and Winternitz–Smorodinsky types.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

A family of superintegrable models has been introduced in[1]. One of them describes the movement of a part
in D-dimensional space and hasthe following Hamiltonian

(1)H =
D∑

k=1

[
− ∂2

∂x2
k

+ ω2

2
x2
k + gk(gk − 1)

x2
k

]
.

The domain of definition is the set of functions which belong together with their first and second derivat
L2(

⊗D
k=1[(−∞,0) ∪ (0,∞)]) and which vanish atxi = 0, i = 1, . . . ,D. Due to its simplicity, Hamiltonian(1)

serves as a useful playground for various methods in quantum mechanics. ForD = 2, the pertaining Schrödinge
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equation is separable not only in Cartesian but also in polar and elliptical coordinates. In polar coordinatex1 =
r cosφ, x2 = r sinφ), the angular equation is

(2)Ωξl(φ) =
[
− ∂2

∂φ2 + g1(g1 − 1)

sin2 φ
+ g2(g2 − 1)

cos2 φ

]
ξl(φ) = b2

l ξ(φ),

where the solutions coincide with the well-known Pöschl–Teller[2] states defined in terms of Jacobi polynomia

ξ
(g1,g2)
n (φ) ∼ sing1 φ cosg2 φP

(g1− 1
2 ,g2− 1

2 )
n (cos 2φ),

(3)b2
l = (g1 + g2 + 2n)2.

In the most elementary special case withg1 = g andg2 = 0 the domain of definition of our solutions is a union
two subdomains in thex1–x2 plane, separated by an impenetrable barrier. In the language ofφ, we have to conside
a union of two intervals, Dom(φ) = ⋃1

k=0(kπ, (k + 1)π).
Of course, a much more interesting model will work with both the couplingsg1 andg2 different from zero

where, at equal strengthsg1 = g2 = g �= 0, the wave functions are Gegenbauer polynomials,

(4)ξ
(g,g)
n (φ) ∼ sing 2φC

g
n(cos 2φ)

and coincide with eigenfunctions of the modification− ∂2

∂φ2 + 4g(g−1)

sin2 2φ
of the operatorΩ in (2). This coincidence is

the consequence of the followingsimple trigonometric identity

(5)
1

sin2 φ
+ 1

cos2 φ
= 4

sin2 2φ
.

The simplicity of the latter identity looks indicative andenigmatic at the same time. Firstly, it seems to reflect th
separability of our problem as well as a symmetry in positionsof the singularities on the circular domain, i.e., afte
some elementary trigonometry,

(6)
1

sin2 φ
+ 1

sin2(φ − π/2)
+ 1

sin2(φ − π)
+ 1

sin2(φ − 3π/2)
= 8

sin2 2φ
.

Secondly, the exceptionality of our choice of the identical strengthsg might open an immediate relationship b
tween the model(1) and several other solvable models based on the use of a suitable Lie algebra of symme[3]
(cf. also Section3.2 below and/or a very recent developments as sampled in Refs.[4–6]). Finally, our interest in
the elementary trigonometry proved further enhanced bythe recent independent clarification of the solvability
certain models usingq-deformed Coxeter groups[7].

An overlap of all these observations formed a motivation of our forthcoming considerations.

2. Auxiliary trigonometric identities

It might be possible to find an identity resembling(5) when sin−2-type singularities cut the circular domain in
N equal parts with an arbitrary integerN , Dom(φ) = ⋃N−1

k=0 (2kπ
N

, 2(k+1)π
N

). Such a desired generalization has be
found to possess the form

(7)
N−1∑
k=0

1

sin2(φ − 2kπ
N

)
=




N2

sin2 Nφ
, N odd,

N2

2 sin2 N
2 φ

, N even.

The rigorous proof of its validity is both simple and straightforward. We start from

(8)
N−1∑ 1

sin2(φ − 2πk )
= − d2

dφ2
ln

(
N−1∏

sin

(
φ − 2πk

N

))

k=0 N k=0
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and employ the known formula for the product of trigonometric functions[8],

(9)
N−1∏
k=0

sin

(
φ − 2πk

N

)
=




(−1)
1−N

2

2N−1 sinNφ, N odd,

(−1)
−N
2

2N−1 (1− cosNφ), N even.

This gives Eq.(7) immediately. A cosine analog to(7)

(10)
N−1∑
k=0

1

cos2(φ − 2kπ
N

)
=




N2

cos2 Nφ
, N = 2p + 1,

N2

2 cos2 N
2 φ

, N = 4p + 2,

N2

2 sin2 N
2 φ

, N = 4p, p ∈ N.

can be proved in the similar manner. We have to keep in mind that for the real argumentsφ, the identities contain th
periodic trigonometric functions. Even if we move to the complex argumentsφ [9–11], the emergence of the pha
of φ merely introduces a new rather artificial “degree of freedom” while the trigonometric identities themselv
remain unchanged.

For the realφ we are now prepared to regard(2) as anN = 1 special case of a much broader class of the exa
solvable angular Schrödinger equationsΩ(N)ξm(φ) = b2

mξm(φ), i.e.,

(11)

(
− ∂2

∂φ2
+

N−1∑
k=0

g1(g1 − 1)

sin2(φ − 2kπ
N

)
+

N−1∑
l=0

g2(g2 − 1)

cos2(φ − 2lπ
N

)

)
ξm(φ) = b2

mξm(φ).

The eigenvalues are given by the following formulas for corresponding integersN

bm = N

4

(
1+

√
1+ 8

[
g1(g1 − 1) + g2(g2 − 1)

] + 4m
)
, N = 4p,

bm = N

4

(
2+

√
1+ 8

[
g1(g1 − 1)

] +
√

1+ 8
[
g2(g2 − 1)

] + 4m
)
, N = 4p + 2,

(12)bm = N(g1 + g2 + 2m), N = 2p + 1, p,m ∈ N.

Also the solvability of(11) in terms of Jacobi polynomials is retained since we can perform the summations
angular partV of the interaction,

V = N2

2

[
g1(g1 − 1) + g2(g2 − 1)

sin2 N
2 φ

]
, N = 4p

= N2

2

[
g1(g1 − 1)

sin2 N
2 φ

+ g2(g2 − 1)

cos2 N
2 φ

]
, N = 4p + 2

(13)= N2
[
g1(g1 − 1)

sin2 Nφ
+ g2(g2 − 1)

cos2 Nφ

]
, N = 2p + 1, p ∈ N

using the identities(7) and(10).

3. A few immediate applications

We may return back from Eq.(13) to the Pöschl–Teller bound-state problem in one dimension after an ele
tary linear transformatioñφ = Nφ or φ̃ = N

2 φ. Similarly, some of the related known separable and solvable mo
in more dimensions may be revealed as special cases as well. Nevertheless, our present key message is that in
latter context, also some new solvable models emerge due to our full freedom in the choice of the integerN in (11).



V. Jakubský et al. / Physics Letters A 334 (2005) 154–159 157

m

are

n

ac-
ce

that it

ly

ing
the
ormally,
y

cles
he new
3.1. One- and two-particle context

Once we leave the radial part of the (separable) partial differential equation(1) unchanged, our task is to perfor
just a backward transition to the original, “physical” Cartesian coordinatesy1 = r cosφ, y2 = r sinφ. Introducing
the fixed constant parameterssk = sin 2kπ

N
andck = cos2kπ

N
we get the new form of the Hamiltonian,

(14)H = − ∂2

∂y2
1

− ∂2

∂y2
2

+ ω2

2

(
y2

1 + y2
2

) +
N−1∑
k=0

g2(g2 − 1)

(y1ck + y2sk)2 +
N−1∑
l=0

g1(g1 − 1)

(y1sl − y2cl)2 ,

where the mathematical separabilityof our general physical bound-state model remains “hidden”. Its energies

easily expressible in the formEn,m = √
2ω(2n +

√
2

2 bm + 1) where the eigenvaluesbm of the angular equatio
itself are written explicitly in(12).

The latter formula may be read as characterizing a new andrather general two particle model where the inter
tion acquires the different forms for the different values of the integerN . In this way the most elementary choi
of N = 1 returns us back to the Smorodinsky–Winternitz model(1).

At N = 2 the interaction looks much more complicated. Fortunately, after its brief inspection we reveal
coincides with the so calledBC2 model of the exactly solvable type[3],

(15)HBC2 =
2∑

i=1

[
− ∂2

∂y2
i

+ ω2

2
y2
i + g1(g1 − 1)

y2
i

]
+

(
g2(g2 − 1)

(y2 − y1)2 + g2(g2 − 1)

(y2 + y1)2

)
.

In this sense we can consider(14)as a common generalization of the two mathematically different and apparent
physically uncorrelated models.

3.2. Three-particle setting

In the spirit of what has been said in Introduction, Hamiltonians(14)can easily be re-interpreted as describ
three interacting particles on the line. It suffices to consideryi as the two, so-called Jacobi coordinates of
system, to be complemented by the third, so-called center-of-mass (CMS) coordinate of the whole triplet. F
the transformation of the physical single-particle Cartesian coordinatesx1, x2, x3 into the CMS ones is given b
the well-known formula,

(16)

(
y1
y2
Y

)
=




−
√

2
2

√
2

2 0
√

6
6

√
6

6 −
√

6
6√

3
3

√
3

3

√
3

3




(
x1
x2
x3

)
,

whereY is the coordinate of the center of mass. We add to(14)a kinetic and potential term− ∂2

∂Y 2 + ω2

2 Y 2 respon-
sible, as usual, for the confined oscillatory motion of the center of mass of the whole system.

Using a transformation which is inverse to(16) we are now getting a new and interesting model of parti
which interact via both an attractive and repulsive one-, two- and three-particle interaction in general. T
Hamiltonian reads

H = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

− 1

2

∂2

∂x2
3

+ 1

2
ω2(x2

1 + x2
2 + x2

3

)

+
N−1∑
k=0

2g2(g2 − 1)

[(ck +
√

3
3 sk)x1 + (−ck +

√
3

3 sk)x2 − 2
√

3
3 skx3]2

(17)+
N−1∑ 2g1(g1 − 1)

[(−sl +
√

3cl)x1 + (sl +
√

3cl)x2 − 2
√

3clx3]2
l=0 3 3 3
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and its spectrum is purely discrete. The explicit form of the energies

(18)En,m,t = √
2ω

(
2n +

√
2

2
bm + 1

)
+ √

2ω

(
t + 1

2

)
, n,m, t ∈ N

contains a term which emerges due to an overall confinement of the whole triplet in the harmonic-oscilla
(= the contained movement of the center of the mass) and the term which depends directly on the angular
eigenvaluebl (cf. (12)).

4. Discussion

We may summarize that in the context of Section3.1our new solvable Hamiltonians describe a particle wh
moves over a complicated potential surface containing also some strongly singular barriers. In the parallel
equation re-interpretation of our trigonometric identities (and their consequences) in Section3.2 we arrived at a
new family of the genuine three-particle models which remain exactly solvable but which remain solely se
in the “unphysical”, auxiliary polar coordinates.

A few more comments may be added.

4.1. The variability ofN

Similarly to the generalized two-particle system(14), the present Hamiltonian(17)acquires the form of a well
known system atN = 3 and at the very special coupling strengths.

Forg2 = 0, Eq.(17)describes the well-known three-particle Calogero model[12], whose potential is

VCal = ω2

2

(
x2

1 + x2
2 + x2

3

) +
3∑

j<k

g1(g1 − 1)

(xk − xj )2 .

If we let 0 �= g1 �= g2 �= 0, the Wolfes model[13] with the following potential is revealed,

(19)VW = ω2

2

(
x2

1 + x2
2 + x2

3

) +
3∑

j<k

g1(g1 − 1)

(xk − xj )2 +
3∑

l<m, l,m�=n

g2(g2 − 1)

(xl + xm − 2xn)2 .

In the next step let us evaluate the repulsive potential of(17) for a few higher values of the indexN .
At N = 8, formula(13)suggests that the couplings will merge and form only one type of singular potentia

coupling strengthg = (g1(g1 − 1) + g2(g2 − 1))

(20)VN=8 = g

(
4

(x1 − x2)2
+ 12

(x1 + x2 − 2x3)2
+

∑
ε=+,−

2

[(ε 1
2 +

√
3

3 )x1 + (−ε 1
2 +

√
3

3 )x2 −
√

3
3 x3]2

)
.

A very different situation occurs atN = 5 where there emerge singularities of two types distinguished by th
coupling strengthsg1 andg2,

VN=5 =
∑

k=1,2

∑
ε=+,−

[
2g2(g2 − 1)

[(ck + ε
√

3
3 sk)x1 + (−ck + ε

√
3

3 sk)x2 − ε 2
√

3
3 skx3]2

(21)+ 2g1(g1 − 1)

[(
√

3
3 ck − εsk)x1 + (

√
3

3 ck + εsk)x2 − 2
√

3
3 ckx3]2

]
+ 2g2(g2 − 1)

(x2 − x1)2 + 6g1(g1 − 1)

(x1 + x2 − 2x3)2 ,

where one only has to keep in mind thatck = coskπ
5 andsk = sin kπ

5 .
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4.2. Outlook

Being inspired by the simple superintegrable model(1), we derived the class of the trigonometric identities(7)
and(10)by the entirely elementary mathematical means. These identities proved to be an unexpectedly produc
tool for a generalization of several known solvable models. At the same time, the emergence and solvabili
new Hamiltonians opens many new questions.

We did not manage to touch many of them in this text. First of all, one must ask whether there exists an alt
or deeper algebraic background of their solvability. Next,even on a purely analytic level of our consideration
deeper insight would be welcome concerning the role of the repulsive barriers. Last but not least, a guidance
a future analysis of the models with multiple barriers might be also sought somewhere in between their single
particle and multi-particle special cases. Thus, one would really appreciate seeingmoreformal parallels betwee
the superintegrable,separableWinternitz–Smorodinsky-type systems in more dimensions and the intrins
nonseparablemore-particlesystems belonging to the algebraically classified Calogero-type family.
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