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P-1049-001 Lisboa, Portugal
∗kleefeld@cfif.ist.utl.pt
†george@ajax.ist.utl.pt

MICHAEL D. SCADRON

Physics Department, University of Arizona, Tucson, AZ 85721, USA
scadron@physics.arizona.edu

Received 28 May 2002

The quark-level linear σ model (LσM) is revisited, in particular concerning the identifi-
cation of the f0(400–1200) (or σ(600)) scalar meson as the chiral partner of the pion. We
demonstrate the predictive power of the LσM through the ππ and πN s-wave scattering
lengths, as well as several electromagnetic, weak, and strong decays of pseudoscalar and
vector mesons. The ease with which the data for these observables are reproduced in the
LσM lends credit to the necessity to include the σ as a fundamental qq̄ degree of free-
dom, to be contrasted with approaches like chiral perturbation theory or the confining
NJL model of Shakin and Wang.
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1. Introduction

The question as to whether the pion has a scalar qq̄ partner remains highly topical,
now that the f0(400–1200) (or σ) meson has become a firmly established resonance.1

For the latter reason, the bone of contention has shifted from the cavilling at the
“existence” of the σ towards a somewhat more sensible discussion whether the σ
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is a “fundamental” or a “dynamically generated” particle. Now while there is little
dispute about what “fundamental” (or “intrinsic”) means in a mesonic context,
namely a totally colorless state composed of normally one but possibly more qq̄
pairs, the term “dynamically generated” (or “dynamical” only) has been used by
several authors to express rather different physical mechanisms.

For instance, in a Comment2 on a paper by Törnqvist and Roos (TR),3 Isgur
and Speth (IS) argued that the σ meson, at least in their approach, is a broad “dy-
namical pole” due to t-channel forces only, arising from degrees of freedom already
present in the meson–meson continuum, in contrast to an “intrinsic pole” resulting
from a new qq̄ degree of freedom in the dynamics. Moreover, IS criticized and drew
into question the conclusions of TR because of the omission of t-channel forces in
their work. However, in another Comment4 on TR’s paper, Harada, Sannino and
Schechter demonstrated in a concrete model calculation that this omission appears
to be not very crucial and only mildly affects the σ-meson mass and width. Also in
the unitarized meson model of two of us,5 the σ resonance is a consequence of the
inclusion of p-wave qq̄ states, but strongly coupled to the meson–meson continuum
via the 3P0 mechanism. This gives rise to a doubling of the number of poles origi-
nally present in the ground-state confinement spectra, the lower poles corresponding
to the light scalar mesons like the σ. In this formalism, it makes little sense to talk
about “intrinsic” versus “dynamical” poles, since the whole unitarization scheme is
highly dynamical, producing large effects that strongly influence all poles. A similar
conclusion has been reached very recently by Boglione and Pennington.6

In chiral-symmetric approaches like the quark-level Linear σ Model (LσM)7,8

and the Nambu–Jona-Lasinio (NJL) model,9 the σ meson naturally appears as the
chiral scalar qq̄ partner of the pion. Moreover, in the LσM the σ, which is intro-
duced as an elementary degree of freedom in the Lagrangian, is also self-consistently
generated in loop order through a quark loop and tadpole.8 So the σ meson is both
“fundamental” and “dynamically generated”. On the other hand, in the confin-
ing NJL model of Shakin and Wang (SW),10,11 no light scalar qq̄ state shows
up, in contrast to the traditional NJL approach. However, SW do predict a light
scalar resonance, which could be interpreted as the f0(400–1200), merely through
t- and u-channel ρ exchange in ππ scattering,11 in much the same way as IS2 (see
above). Such states SW call “dynamically generated” resonances, as opposed to
“pre-existing” ones. These model results have led them to conclude that10 “the σ
obtained from the study of ππ scattering is not the chiral partner of the pion” and
“the nonlinear sigma model is the model of choice”. In Ref. 11, SW also arrive at
several other conclusions on the nature of different scalar mesons, which we have
shown12 to be not supported by experiment (see also Ref. 13). In Ref. 12, we also ar-
gued against the strict distinction between “intrinsic” and “dynamically generated”
scalar–meson states made by SW.

In this paper, we re-address the issue of the pion’s chiral qq̄ partner, and reach
the following conclusions:
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(a) indeed an f0(630) is dynamically generated from the chiral field theory
constituted by the quark-level LσM,8 which is based on the original chiral
Gell-Mann–Lévy nucleon LσM,7 but also predicts the famous NJL9 result
mσ = 2mq;

(b) the above SW conclusion on the nature of the σ meson is incorrect. Instead,
this σ(630) is indeed the scalar nn̄ chiral partner of the pion.

Rather than just repeating the analysis of Ref. 8, in Sec. 2 we demonstrate the
chiral structure of these LσM states for strong, electromagnetic (e.m.), and weak
interactions. In Sec. 3, we verify our use of chiral LσM couplings by showing that the
corresponding Pγγ, VPγ plus PVγ, VPP e.m., and strong LσM quark loop-order
graphs are always compatible with observed1 SU(2) and SU(3) sum-rule data. We
draw our conclusions in Sec. 4 and, in passing, note that both the SU(3)-symmetry
and infinite-momentum-frame approaches of Ref. 14, and also the dynamical unita-
rized nonet scheme of Ref. 5, arrive at different qq̄ patterns for the isoscalar scalar
mesons than SW in Refs. 10 and 11.

2. Why the f0(630) Scalar σ Meson is the Chiral Partner of the π

2.1. Brief summary of the LσM field theory

The chiral-symmetric SU(2) LσM was first formulated in 1960,7 while the SU(3)
version dates from 1967, 1969 and 1971, respectively.15 The LσM pseudoscalar and
scalar nonet U(3) states [π(140), K(492), η(549), η′(958), and σ(650), κ(800–900),
f0(980), a0(980)] were later dynamically generated.14,8 A LσM is manifestly renor-
malizable and much easier to handle than the nonlinear NJL scheme,9 yet chiral
symmetry in fact blends together these two pictures,16 as the dynamically gen-
erated theory8 shows. Specifically, the SU(2) LσM interaction Lagrangian — due
to dynamical symmetry breaking8 or spontaneous symmetry breaking14 — reads,
after the shift of the σ field,

Lint
LσM = gψ̄(σ + iγ5τ · π)ψ + g′σ(σ2 + π2)− λ

4
(σ2 + π2)2 . (1)

Here, the fermion fields refer to quarks8 and not to nucleons, with constituent
quark mass mq = (mu + md)/2 generated via the chiral Goldberger–Treiman re-
lation (GTR) fπg = mq, with fπ ≈ 93 MeV (and 90 MeV in the chiral limit
(CL)a), resulting in a value near mq ≈ mN/3 ≈ 315 MeV. In fact, it is dynamically

aThe once-subtracted dispersion-relation result

1− fCL
π

fπ
≈ m2

π

8(πfπ)2
≈ 0.03

and fπ ≈ 93 MeV imply fCL
π ≈ 90 MeV, which can be found e.g. in: S. A. Coon and M. D.

Scadron, Phys. Rev. C23, 1150 (1981).
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generated in the CL as mq ≈ 325 MeV,8 and the Gell-Mann–Lévy chiral relations
at tree level are7

g =
mq

fπ
, g =

m2
σ

2fπ
= λfπ . (2)

Moreover, at one-loop level Eqs. (2) are recovered, together with two new equations8

in the CL:

mσ = 2mq , gπqq = g =
2π√
Nc

, (3)

for Nc = 3, also dynamically generated. Then, g = 2π/
√

3 = 3.6276, and

mq = 2π
fCL
π√
3
≈ 325 MeV , mσ = 2mq ≈ 650 MeV (4)

are dynamically generated, from the chiral GTR.8 Finally, all three LσM couplings
in Eq. (1) are dynamically generated as

g =
2π√

3
≈ 3.6 , g′ = 2gmq ≈ 2.3 GeV , λ =

8π2

3
= 26.3 . (5)

Furthermore, this LσM then also recovers the vector-meson-dominance (VMD)
prediction gρππ = gρ from quark loops alone. When the π-σ-π LσM meson loop is
added, this VMD prediction is extended to17

gρππ
gρ

=
6
5

= 1.2 . (6)

Underlying Eqs. (3)–(6) is the CL log-divergent gap equation (LDGE)

1 = −i4Ncg2

∫
d4p

(2π)4
(p2 −m2

q)
−2 , (7)

corresponding to the V ππ quark-loop form factors, automatically normalized to8,18

Fπ(q2 = 0) = 1. Further invoking the LDGE (2.7) in turn requires8,19

gρππ =
√

3gπqq = 2π , (8)

close to the value 6.04 needed to obtain the observed ρ width 150.2 MeV.

2.2. Chiral cancellations for strong-interaction s-wave ππ and πN

scattering lengths

Consider the low-energy ππ and πN LσM graphs of Figs. 1 and 2. Away from the
CL, the ππ contact graph with coupling λ (Fig. 1(a)) is related to the cubic meson
coupling (Fig. 1(b)) as

gσππ(= g′) =
m2
σ −m2

π

2fπ
= λfπ . (9)
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Fig. 1. Low-energy ππ LσM graphs.
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Fig. 2. Low-energy πN LσM graphs.

Then, at the soft-pion point s = m2
π, the net ππ amplitude (Figs. 1(a) and (b))

“miraculously” vanishes7:

Mππ =Mcontact
ππ +Mσ-pole

ππ → λ+ 2g2
σππ(m

2
π −m2

σ)
−1 = 0 . (10)

In other words, the contact term λ “chirally eats” the σ pole at s = m2
π, due to

Eq. (9). Crossing symmetry then extends Eq. (10) to the Weinberg PCAC form,20

but generalized to the LσM21:

Mabcd
ππ = Aδabδcd +Bδacδbd + Cδadδbc ,

ALσM = −2λ
[
1− 2λf2

π

m2
σ − s

]
=
m2
σ −m2

π

m2
σ − s

s−m2
π

f2
π

.

(11)

Thus, for mσ = 650 MeV (as dynamically generated in Ref. 8 via the GTR), the
I = 0 s-channel amplitude 3A+B+C predicts a 23% enhancement of the Weinberg
s-wave scattering length at s = 4m2

π, t = u = 0, ε = m2
π/m

2
σ = 0.045:

a(0)
ππ

∣∣
LσM

=
7 + ε

1− 4ε
mπ

32πf2
π

≈ 1.23
7mπ

32πf2
π

≈ 0.20m−1
π . (12)

If instead we use mσ = 550 MeV, a value which is closer to what is found
in unitarized meson models,5,3 we get ε = 0.063, so that Eq. (12) yields an in-
creased scattering length a(0)

ππ |LσM ≈ 0.22m−1
π . The latter result is also obtained in

a two-loop chiral-perturbation-theory (ChPT) calculation involving about 100 arbi-
trary LECs! So we prefer working with the simple parameter-free LσM form (2.12),
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since the Weinberg PCAC scattering length20 is based on the PCAC equation itself,
first derived via the LσM Lagrangian,7 our Eq. (1).

Proceeding to the s-wave πN scattering length, the πN background amplitude
with pseudoscalar (PS) coupling and “Adler consistency condition” (ACC) is,22 for
q → 0,

Mij
πN (PS) =

g2
πNN

mN
δij . (13)

Then the isospin-zero scattering length corresponding to the “large” PS πN pole
term, reads

a
(+)
πN (PS) = −g

2
πNN

4π
1

mN +mπ
≈ −1.8m−1

π , (14)

is reduced to near zero by adding to it the term of Eq. (13):

a
(+)
πN (Adler) = −g

2
πNN

4π
m2
π/4m2

N

mN +mπ
≈ −0.01m−1

π , (15)

due to the ACC soft-pion theorem. Stated in LσM language, when the σ pole in
Fig. 2(b) is added to Fig. 2(a) (Eq. (14)), the net πN scattering length (due to the
LσM coupling (2.9)) combined with the GTR again leads to the small scattering
length (2.15).b,23

These “miraculous”7 chiral cancellations, Eqs. (10) and (15), both due to the
LσM coupling (2.9), appear to follow the experimental data, suggesting a

(+)
πN ≈

−0.005m−1
π back in 1979,24 and now finding25 a

(+)
πN = (−0.0001+0.0009

−0.0021 ) m−1
π and

a
(+)
πN = (−0.22± 0.43)m−1

π , respectively. However, ChPT advocates prefer to work
with a (seemingly non-renormalizable and obviously nonlocal) pseudovector theory,
derived from a nonlinear σ model, from which the σ meson has been eliminated
as a fundamental degree of freedom. In our opinion, this is one of the reasons why
in ChPT the above results require such a tremendous effort, while they are almost
trivially obtained in the quark-level LσM. At this point, we also cannot ignore the
mounting experimental evidence for the existence of the σ.1

bThe explicit analytic expression for the isoscalar πN scattering length obtained by the sum of
the pole term and the sigma exchange can be found, e.g., in Chap. 10.4 of the book, J. I. Kapusta,
Finite-Temperature Field Theory (Cambridge Univ. Press, 1989). In our notation it is given by:

a
(+)
πN =

1

4π

1

(1 + (mπ/mN ))

 2gA(0)g′gσNN
m2
σ︸ ︷︷ ︸

“σ-exchange”

−
g2
πNN

mN [1− (mπ/2mN )2]︸ ︷︷ ︸
“pole-term”

 . (16)

The resulting isoscalar scattering length is consistent with our estimate obtained from the ACC
given in Eq. (15). Furthermore, we should note that various previous works treating πN scattering
on the basis of the sum of a pole- and a sigma-exchange term (like e.g. the model of Hamilton23)
associate the pole term with the excitation of intermediate antinucleons rather than nucleons.
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2.3. Pion charge radius and the chiral pion

Now we comment on the chiral structure of the pion charge radius26

r2
π = 6

dFπ(q2)
d(q2)

∣∣∣∣
q2=0

=
3

4π2f2
π

= (0.60 fm)2 (17)

for the chiral-limiting value fπ = 90 MeV, which result is close to the measured27

0.63± 0.01 fm. Invoking the LσM relation8 fCL
π =

√
3

2πmq from Eq. (4) above, then
Eq. (17) requires, from the quark-loop pion form factor at q2 = 0,17

rπ =
1
mq

= 0.61 fm . (18)

This tightly bound (fused) pion charge radius, as observed experimentally, certainly
suggests the chiral pion wave function is qq̄. Note that ChPT requires rπ to be
proportional to the parameter “L9”.c We prefer the parameter-free forms, Eqs. (17)
and (18) above.

2.4. Chiral couplings for π0 → 2γ and σ → 2γ e.m. decays

One knows that PVV LσM coupling28 or AVV coupling29 gives the gauge-invariant
chiral quark-loop π0 → 2γ amplitude

|Fπ0→2γ | =
α

πfπ
≈ 0.025 GeV−1 , (19)

forNc = 3. This is in perfect agreement with the data1 Γπ0→γγ = m3
π|Fπ0→2γ |2/64π

or |Fπ0→2γ | = 0.025± 0.001 GeV−1, for Nc = 3. Likewise, the chiral partner to the
π, the σ(630), predicts the gauge-invariant quark-loop-plus-π+-loop amplitude30

|Fσ→γγ | =
5
3
α

πfπ
+ 0.5

α

πfπ
≈ 2.2

α

πfπ
≈ 0.055 GeV−1 , (20)

corresponding to the decay rate (for mσ = 630 MeV)

Γσ→γγ =
m3
σ|Fσ→γγ |2

64π
≈ 3.76 keV . (21)

This prediction is reasonably compatible with the extracted σ → 2γ rates31,32

(3.8± 1.5) keV and (5.4± 2.8) keV, respectively, provided that these rates indeed
refer to the σ, as advocated by the authors,31 and not to the f0(1370).

cJ. Gasser and H. Leutwyler, Ann. Phys. 158, 142 (1984); Nucl. Phys. B250, 517 (1985). In the
former paper, Appendix II attempts to rule out a σ resonance below 1 GeV in a LσM context.
However, this “proof” is not based on the standard LσM of our Refs. 7 and 8 as summarized in
Sec. 2 above. A recent strong-interaction argument favoring a σ-meson theory over ChPT (besides
Refs. 17, 26 and 27) was given by J. Schechter, hep-ph/0112205.
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2.5. Chiral transitions for weak KS → 2π decays

The s-channel σ-pole graph of Fig. 3 dominates parity-violating (PV) KS → 2π
decays, with PV weak amplitude magnitude

|〈2π|HPV
w |KS〉| = |2〈2π|σ〉|

|〈σ|HPV
w |KS〉|

m2
KS
−m2

σ + imσΓσ
≈ 1
fπ
|〈σ|HPV

w |KS〉| , (22)

since 〈2π|σ〉LσM = m2
σ/2fπ, mK ' mσ, and Γσ ' mσ for the broad σ meson.1

However, pion PCAC consistency requires33

|〈2π|HPV
w |KS〉| →

1
fπ
|〈π|[Qπ5 , HPV

w ]|KS〉| =
1
fπ
|〈π|HPC

w |KL〉| , (23)

for Hw built up from V − A chiral currents (PC = parity conserving). Equating
(22) to (23) gives a definition of chiral π and σ partners30:

|〈σ|HPV
w |KS〉| = |〈π0|HPC

w |KL〉| . (24)

The charge algebra [Q+Q5, Hw] = 0, PCAC, and Eq. (24) clearly suggest that the
π(140) and σ(630) are chiral partners.

π

π

σ
K s H

 pv

 w

Fig. 3. Parity-violating decay Ks → ππ via a sigma pole.

3. Quark-Loop LσM Strong and e.m. Decays

Rather than proceeding on with more detailed weak-interaction predictions, from
Sec. 2 we test the LσM quark-loop predictions directly against the data for strong
and e.m. decays. First consider the udu plus dud quark loops for ρ0 → π+π− decay
with the LDGE (2.7), leading to gρππ = 2π, Eq. (8). The latter LσM VMD coupling
predicts the rate

Γρ0→2π =
g2
ρππ

m2
ρ

|p|3
6π

= 162.6 MeV for |p| = 358 MeV , (25)

close to data at1 (150.2±0.8) MeV. For the small ρ0 → e+e− and ω → e+e− decays,
we use single-photon exchange to extract the gρ and gω couplings from data1:

Γρ0→e+e− =
α2

3
mρ

4π
g2
ρ

= 6.77± 0.32 keV , (26)

Γω→e+e− =
α2

3
mω

4π
g2
ω

= 0.60± 0.02 keV , (27)
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leading to

gρ ≈ 5.03 , gω ≈ 17.05 . (28)

The latter couplings are near the U(3) value gω = 3gρ, assuming the ω is purely
non-strange. But one knows1 that there is a slight ω–φ mixing angle φV ≈ 3.7◦,
from the small φ → πγ decay. Note that the LσM coupling gρππ is relatively near
gρ ≈ 5.03 found in Eq. (28). However, when one adds the π-σ-π meson loop to the
quark loop, one knows from the LσM Eq. (6) that actually gρππ/gρ = 6/5, whereas
Eq. (28) predicts the nearby ratio

gρππ
gρ
≈ 2π

5.03
≈ 1.25 . (29)

Next consider the e.m. decays ρ → πγ and ω → πγ. Our only use of SU(3)
symmetry is λγ = λ3 + λ8/

√
3. This predicts the quark-loop decays, using the gρ

and gω couplings from data in Eq. (28),

Γρ→πγ =
|p|3
12π
|Mρπγ |2 = 59 keV for |p| = 372 MeV , (30)

with |Mρπγ | = egρ/8π2fπ = 0.207 GeV−1, which comes out close to the data1

Γρ±→π±γ = (68± 7) keV. Likewise, the LσM predicts

Γω→πγ =
|p|3
12π
|Mωπγ |2 = 711 keV for |p| = 379 MeV , (31)

with |Mωπγ | = egω cosφV /8π2fπ = 0.7017 GeV−1, very close to the data1 Γω→πγ =
(717± 43) keV.

Finally, the e.m. decay π0 → 2γ is predicted via u and d quark loops, together
with the gauge-invariant amplitude (2.18) and Nc = 3, to be

Γπ0→2γ =
|p|3
8π
|Mπ02γ |2 = 7.64 eV for |p| = 67.49 MeV , (32)

again close to the data1 Γπ0→2γ = (7.74± 0.55) eV.
When considering η and η′ initial states, we circumvent explicit η–η′ mixing by

only computing the sum of their squared matrix elements, thereby using cos2 φPS+
sin2 φPS = 1. Then, Table I of Ref. 28 shows the PVV quark-loop matrix elements
for π0 → 2γ, η → 2γ, η′ → 2γ are, respectively, A, A(5 cosφPS −

√
2rs sinφPS)/3,

A(5 sinφPS +
√

2rs cosφPS)/3, for A = α/πfπ ≈ 0.025 GeV−1, and where rs =
m̂/ms ≈ 1/1.44 is the constituent-quark-mass ratio, with ms/m̂ = 2fK/fπ − 1 and
fK/fπ = 1.22. Therefore, the matrix-element squares satisfy |Mη2γ |2 + |Mη′2γ |2 =
A2(25 + 2/1.442)/9, corresponding to the LσM decay-rate SU(3) sum rule, implied
from Ref. 28,

Γη2γ

m3
η

+
Γη′2γ
m3
η′

= 2.885
Γπ02γ

m3
π0

. (33)

Given the measured central-value rates and masses1 Γη2γ = 464 eV, mη =
0.5473 GeV, Γη′2γ = 4282 eV, mη′ = 0.9578 GeV, Γπ02γ = 7.74 eV, mπ0 =
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0.1349766 GeV, the L.H.S. of Eq. (33) sums to 7704 × 10−9 GeV−2, while the
R.H.S. is 9081 × 10−9 GeV−2. A one-standard-deviation reduction of the R.H.S.
gives 8435× 10−9 GeV−2, only 9% greater than the L.H.S. of Eq. (33).

Likewise, we can construct an SU(3) sum rule again by invoking sin2 φ+cos2 φ =
1 for any angle, and referring to Ref. 28 for η′ → ργ, ρ → ηγ, ρ → πγ decays.
The squares of the LσM quark-loop matrix elements are |Mη′ργ |2 + |Mρηγ |2 = 9B2

and |Mρπγ |2 = B2, corresponding to the LσM decay-rate SU(3) sum rule28

Γη′ργ
|p1|3

+ 3
Γρηγ
|p2|3

= 27
Γρπγ
|p3|3

. (34)

For the measured central-value rates and CM momenta1 Γη′ργ = 59.6 keV, |p1| =
169 MeV; Γρηγ = 36.05 keV, |p2| = 189 MeV; Γρπγ = 67.6 keV, |p3| = 372 MeV,
the L.H.S. of the sum rule Eq. (34) sums up to 1.2348× 10−2 GeV−2 + 1.6019 ×
10−2 GeV−2 = 2.8367 × 10−2 GeV−2, while the R.H.S. is 3.5455 × 10−2 GeV−2.
Considering we have combined the PS η′ decay rate and two vector ρ decay rates,
we suggest that the LσM SU(3) sum rule (3.10) is reasonably well satisfied.

By analogy with Eqs. (33) and (34), another SU(3) sum rule implied in Ref. 28
reads

Γη′ωγ
|pa|3

+ 3
Γωηγ
|pb|3

= 0.336
Γωπγ
|pc|3

. (35)

From Ref. 1, the measured central-value rates and CM momenta are Γη′ωγ =
6.12 keV, |pa| = 160 MeV; Γωηγ = 5.486 keV, |pb| = 199 MeV; Γωπγ = 717 keV,
|pc| = 379 MeV. Then the L.H.S. of Eq. (35) sums to 1.4941 × 10−3 GeV−2 +
2.0884 × 10−3 GeV−2 = 3.5825 × 10−3 GeV−2, while the R.H.S. is nearby at
4.4253 × 10−3 GeV−2. If one increases the ω → ηγ rate by one standard devia-
tion, the L.H.S. of Eq. (35) becomes 3.940× 10−3 GeV−2 — again only 9% below
the R.H.S.

4. Conclusions

In the preceding we have shown, by straightforward computation, that the quark-
level LσM of Refs. 14 and 8 easily reproduces the small ππ and πN s-wave scattering
lengths, the pion charge radius, and a variety of e.m., weak, and strong decays of
pseudoscalar and vector mesons. The crucial part for most of these processes is the
inclusion of the f0(400–1200), alias σ meson, as a fundamental qq̄ degree of freedom.
This occurs very naturally in the LσM, where the σ can then also be dynamically
and self-consistently generated,8 as well as in the unitarized quark/meson model
of Ref. 5. Moreover, a finite-temperature (recall footnote b) chiral-phase-transition
approach,34 which independently “melts” the quark mass, the σ mass, and the
quark condensate in QCD, suggests that the above LσM can be identified as the
infrared limit of QCD.35

In contrast, nonlinear approaches where the σ does not show up as a qq̄ state
or has even been designedly eliminated as a fundamental degree of freedom, like
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the confining NJL-type model of SW10,11 and ChPT, appear to have difficulties
in reproducing several low-energy data, besides having strained relations with the
now firmly established σ itself.c,30 We therefore argue that the conclusion of SW10

according to which the σ is not the chiral partner of the pion is not based on
“major chiral-symmetry violations”, but rather on the complications and possible
approximations in their nonlinear NJL scheme. In this respect, we should point
out the following apparent contradiction in SW’s line of reasoning. In Ref. 10 they
conclude that confinement is quite a small effect for the π(138) and K(495) mesons,
which may even be best to neglect altogether. However, in Sec. 2.3 we showed that
the observed pion charge radius suggests in fact a qq̄ (fused) π meson composed
of tightly bound quarks, corresponding to an almost massless Nambu–Goldstone
pion. Moreover, the well-understood NJL model without confinement does predict
a bound-state σ meson as the chiral qq̄ partner of the pion. We believe to have
demonstrated, in the framework of the quark-level LσM, that this is indeed the
scenario favored by experiment.
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